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ABSTRACT

A two point boundary value problem has been solusithg Hermite collocation method. This techniqueaais
combination of orthogonal collocation and Hermitgerpolation polynomial. Zeros of Legendre polynalrias been
taken as collocation points. The approximating fiomc has been discretized using cubic Hermite patyials.

The resulting set of equations has been solvedyMITLAB odel5s system solver.
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INTRODUCTION

Solution of two point boundary value problems af tbrm LY(y(x)) =f(x,y), where L' is an operator, has always
been a center of interest for the mathematiciaosrat the globe. Numerous methods have been dewvkkyuh as Spline
collocation (Bialecki 1993, Fairweather 1994, Dajmya & Pani 2005), Finite difference method
(Agrawal & Jayaraman 1994), Orthogonal collocat{Soliman & Alhumaizi 1999, Arora et al. 2005), Gkie method
(Cueto et al. 2003), Least square method (Doostdraéarino 2009), Homotopy analysis method (Vahdatl. 2010)
etc. to solve two point boundary value problems.ofm these above said methods, Finite differenckntgae and
orthogonal collocation technique are the most feid by the investigators in different forms for gwution of different
type of models.

Orthogonal collocation on finite elements is conalion of weighted residual and variational metheadsch
gives stability as well as accuracy to the resdlte Lagrangian interpolation polynomials are wydesed to solve two
point boundary value problems due to its Kronegierperty and easy computability. However, in thigeipolating
polynomial the trial functions and its first deriive are assumed to be continuous at the node pdinincreases the

number of collocation equations and thus increttssomputational time.

To overcome this property, the orthogonal collamatmethod is clubbed with Hermite interpolationym@mial.
In Hermite collocation method, the approximatingdtion is discretized in terms of cubic Hermite yamial and then
orthogonal collocation is applied within each subain of the global domain. Due to the continuitgpgerty of Hermite
polynomials there is no need to assume that apmiagiig function and its first derivative should centinuous at node

points.
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Consider the boundary value problem:

2
L 025P‘16—Z ~ % 4 Ky: (x000,)%(0) (1)
ox=  ox
K,y+ KZ%I atx=0 2)
K3y+K4%:O atx=1 (3)
y=1 att=0 (4)

Where, P, K, K, K,, K;, K,are constants

Hermite Collocation Method

Hermite collocation method is an improvisation othogonal collocation method. In this techniques thal
function is approximated by Hermite interpolatingymomials instead of Lagrangian interpolating pagnials. In present

study cubic Hermite polynomials have been takendigcretize the approximating function. To apply hodonal

X=X
collocation within each element a new variable inisoduced in such a way thak= L where h, = X,,; — X, such
4

that u=0 whenX = X, and u=1 wheiX = X,,,. The interior collocation points are taken to he toots of the shifted

Legendre polynomials.
The Cubic Hermite approximation is defined as

4
y'(u)=> a'(t)H, (u) Wherer =1, 2,.......k (5)

i=1

Where, k is the number of elements aﬁcﬂt) 's are the continuous functions of ‘t' ifi" element.{;(u)} are

piecewise cubic Hermite polynomials. The cubic Hezmolynomials have also been taken by Carey &alyson (1975),
Dyksen and Lynch (2000), Brill (2002) etc. to soltree boundary value problems. In present study,adttkeogonal
collocation is to be defined within each sub-dom#ierefore, cubic Hermite polynomials has beeimeefas:

H,(u) =1-3u®+2u® (6)
H,(u)=u®(3-2u) @)
H4(u) =u(u-1)* ®
H,(u)=u*(u-1 )

After substituting the interpolating function, tresidual obtained is:
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ay L0%y Ay -
Rup= 2 - 025P™ Z Y Ky (10)
ot ox°  0x
At j" collocation point, residual is set equal to zém,
R'(u,t)=0 Ui=1,2,..... k (11)
whereu;'s are collocation points, since order of each polyial is three, therefore two interior collocatjooints

are chosen. The first and second order discretitegivatives of the trial functioriy‘/ taken at collocation point are

defined by A and B, respectively, wherg=A'"i(y) and B=H"(u;). After applying Hermite collocation method, the
following set of collocation equations is obtained:

d 4 -1 4
%:OZW S'a' (1B, _zq(t)A “Ky': =12,k (12)
i=1 / i=1
L Ko _
Ky +7 22 3l (HA, =0 atx= 0 (13)
v i=l
K.Ys +—Za (DA, = atx =1 (14)
( i=1

The equations from (12) to (14) can be put intorttagrix form as:
Ha'= (P'B-A-K)a (15)

where H is the coefficient matrix of cubic Hermitelynomials at' collocation point. Equation (15) can further
be modified as:

a'=Qa (16)
WhereQ =H *(P'B- A-K).

It is clear from the equation (12) to (16) that tesulting system gives 2k number of collocationapns to
determine the 2k coefficients.

a, ) | &
. 000

a

3 000 %
D: 000 0 O
O] 000 0 O
O -0 0T O
_an—ll_ ***_an—l_

Figure 1: Diagrammatic Representation of Equation 16)
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The diagrammatic structure of equation (15) is giireFigure 1. It is clear from this figure thaft; anda®, are

determined from boundary conditions.

Error Calculation

The next step is to calculate the error. The negaterror for linear problem is calculated by usitig

yex B ynm

formula,———, where ¥, is the exact value obtained by conventional metHik@ Laplace transforms

Yex

(Brenner 1962) and,y is the numerical value calculated using Hermitéocation method.

Problem

Consider a linear diffusion reaction problem

oy L 0%y oy
— = 0.25P - — ,)0(0,1)%(0, T 17
ot x>  0x (090D G
40y _
y—025P" =2 =0 atx =0, for all =0 (18)
o0x
oy _
Pl 0 atx = 1, for all t=0 (19)
X
y=1 at t= 0, for allx (20)

Now, define a trial function as discussed above &tet applying cubic Hermite interpolation follavg system

of differential algebraic equations is obtained:

4 . 025Pt & ‘ 13 P

Z;‘ H,a'(t)= TZL‘ B;a (1) —h—zl“Ajiaq (t);j=2,3and=1.2,3.....k (21)
i= 0 1= 1=

> 202 0- 22 55,0000

s £ Ead (22)
S H, (Da* () =0

2 23]

In this system using equation (22) and equation), (8% system of differential algebraic equatiorms de

converted into a system of differential equationthva, = 4Pa, anda, =0

RESULTS AND DISCUSSIONS

The resulting system of 2k equations obtained dfitsaretizing the system of equations is solvedgi$ilATLAB

with odel5s system solver.

Effect of Parameter P

In Figure 2 the behavior of solution profiles fanmerical and analytic values is checked. The nuwakand
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analytic values are compared for P=0.2, 1, 4 andti€ observed from this figure that area undher ¢urve increases with
the increase in value of P and converges to stetadg condition more rapidly for large value ofPcampared to small
value of P. It is also clear from this figure thaualytic and numeric values are matching to a dddimit and numerical

values are also converging to steady state conditicoothly.

1 1:4-&_-::.‘:. [:8 E: o

. - = P=0.2 HCM
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08 4 -._ \\ Lom seeeeeeee P=0.2 Analtical
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0.2 "R ‘\g . " P=10HCM
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Figure 2: Comparison of Analytic and Numerical Valwes for Different Values of P

In Figure 3 the behavior of relative error (REsmown for P varying from 2 to 10. It is observedttim case of
P=2, the relative error is less than 0.02 % whluboss upto 0.08% for P=6 and 0.1% for P=10. Itue tb the reason that

2

with the increase in P, the coefficient%f—z becomes smaller and equation becomes stiff. Wadiations in the relative
X

error are also observed in Figure 3. It is duehtodtiffness of equation, but for large time period, the relative error is
found to be less than 1% for P < 10.
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Figure 3: Comparison of Relative Error for Different Values of P

In Figure 4, the behavior of relative error is shofer P varying from 20 to 60 with respect to tinfieis clear

2
from this figure that with the increase in the \eahf P, the coefficient 01L¥ becomes smaller and tends to singularity
X

making equation stiff. This figure shows that iseaf P = 20 and P = 40, relative error is lesa th&% and for P = 60, it

is less than 3%.
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Figure 4. Comparison of Relative Error for Different Values of P

Effect of Number of Elements

In figure 5, the behavior of relative error is shofar different number of elements for P = 40slbbserved from
this figure that to reduce the error, the numbeelefments have gone upto 140. It is due to cubieniie interpolation
polynomial. In case of cubic polynomial, the numlmdrinterior collocation points is two. Due to evemmber of
collocation points and less number, there is wide lgetween two collocation points which contribiaténcrease in error.
It can be reduced by increasing the number of edsni® span the entire interval [0, 1]. In thisufig it is clear that for
35 number of elements, the relative error is upf@®which is less than 1% for 70 and 140 elements.

0.005
——k=35
O 4
----- k=70
-0.005
k=140

-0.01

Relative error

-0.015

-0.02

-0.025 - Time

Figure 5: Comparison of Relative Error for Different Number of Elements for P=10

Comparison of OCM and HCM

In Figure 6 the behavior of relative error is shdanP = 10 for orthogonal collocation method (OCatid HCM.
The similar problem is solved by OCM for 5 interimllocation points. In this figure it is clear thalative error is very
high for OCM as compared to HCM. As time increasles behavior of solution profile is very abrupt.dase of HCM, the
relative error is very small and is less than 1 Bitclv goes upto more than 200 times in case of Ol@Mable 1 and 2, the
analytic and numerical values are compared for@and P = 10 for OCM and HCM. It is clear from ttable that with
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the increase in time relative error shoots wherénasase of HCM, the values approach to steady standition very

smoothly.

Relative error
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Figure 6: Behavior of Relative Error for OCM and HCM

Table 1: Comparison of Analytic and Numerical Resuk Calculated by HCM and OCM

t P=6, Analytic | P=6, HCM P=6, OCM | RE=6, HCM | RE=6, OCM
0.0 1000x10° 1000x10° 1020x10° 0000x10° 2.040x 107
0.1 1000x10° 1000x10° 9974x10™" 0000x10° 2590x10°°
0.5 9915x10™ 9914x10™ 9921x10™ 3025%x10° 6.354x 10*
0.8 7455x10™" 7456x10™ 7374x10" | 1.610x 10" 1089x107°
1.2 2144x10™ 2145x10™" 2098x10" | 5.597x 10* 2164x107
1.8 1168x107 1168x10° 1582x10° 5.993 10°* 3.540x 10"
2.0 3882x10° 3885x10°° 8783x10° | 7.985¢< 10" 1.262x 10

Table 2: Comparison of Analytic and Numerical Resuk Calculated by HCM and OCM

t | P=10, Analytic | P=10, HCM | P=10, OCM | RE=10, HCM | RE=10, OCM
0.0 1000%x10° 1000%x10° 1026x10° 0000x10° 2.560x 107
0.1 1000x10° 1000x 10° 9953x10™ 0000x10° 4720x107
0.5 9991x10* 9991x10" 1001x10° 3002x10°° 1.802x 10°
0.8 | 8185x10™ 8187x10™ 8021x10™ 3.298x 10* 1999x107?
1.1 | 2934x10™* 2935x10" | 2849x10* 6.135¢ 10° 2904x107?
1.6 | 1162x107 1163x107 | 1440x107 1.549%« 10° 2.390x 10"
1.8 2372x107° 2375<10° | 9168x107° 1.391x 10° 2.865¢ 16
2.0 4382x10™ 4387x10* | 8951x10° 1.27% 10° 1.943« 10

CONCLUSIONS

In present study, the technique of Hermite collimrats presented to solve two point boundary vadt@blems.
From Tables 1and Table 2 it is observed that HCMeiger than OCM for high range of parameterss kilso observed
that HCM gives better results than OCM which cogeeto steady state condition to the desired acgwhtess than 1%

for P varying from 1 to 140 whereas on the othench®CM gives the results deviated from analytic sondence

technique of HCM is found to be better and moreveogent than OCM to solve two point boundary vaueblems.
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